Triangle algebras: A formal logic approach to interval-valued residuated lattices
نویسندگان
چکیده
In this paper, we introduce triangle algebras: a variety of residuated lattices equipped with approximation operators, and with a third angular point u, different from 0 and 1. We show that these algebras serve as an equational representation of intervalvalued residuated lattices (IVRLs). Furthermore, we present Triangle Logic (TL), a system of many-valued logic capturing the tautologies of IVRLs. Triangle algebras are used to cast the essence of using closed intervals of L as truth values into a set of appropriate logical axioms. Our results constitute a crucial first step towards solving an important research challenge: the axiomatic formalization of residuated t-norm based logics on L , the lattice of closed intervals of [0,1], in a similar way as was done for formal fuzzy logics on the unit interval.
منابع مشابه
Filters of residuated lattices and triangle algebras
An important concept in the theory of residuated lattices and other algebraic structures used for formal fuzzy logic, is that of a filter. Filters can be used, amongst others, to define congruence relations. Specific kinds of filters include Boolean filters and prime filters. In this paper, we define several different filters of residuated lattices and triangle algebras and examine their mutual...
متن کاملTriangle Algebras: Towards an Axiomatization of Interval-Valued Residuated Lattices
In this paper, we present triangle algebras: residuated lattices equipped with two modal, or approximation, operators and with a third angular point u, different from 0 (false) and 1 (true), intuitively denoting ignorance about a formula’s truth value. We prove that these constructs, which bear a close relationship to several other algebraic structures including rough approximation spaces, prov...
متن کاملThe pseudo-linear semantics of interval-valued fuzzy logics
Triangle algebras are equationally defined structures that are equivalent with certain residuated lattices on a set of intervals, which are called interval-valued residuated lattices (IVRLs). Triangle algebras have been used to construct Triangle Logic (TL), a formal fuzzy logic that is sound and complete w.r.t. the class of IVRLs. In this paper, we prove that the so-called pseudo-prelinear tri...
متن کاملA Fuzzy Formal Logic for Interval-valued Residuated Lattices
Fuzzy formal logics were introduced in order to handle graded truth values instead of only ‘true’ and ‘false’. A wide range of such logics were introduced successfully, like Monoidal T-norm based Logic, Basic Logic, Gödel Logic, Lukasiewicz Logic etc. However, in general, fuzzy set theory is not only concerned with vagueness, but also with uncertainty. A possible solution is to use intervals in...
متن کاملA characterization of interval-valued residuated lattices
As is well-known, residuated lattices (RLs) on the unit interval correspond to leftcontinuous t-norms. Thus far, a similar characterization has not been found for RLs on the set of intervals of [0,1], or more generally, of a bounded lattice L. In this paper, we show that the open problem can be solved if it is restricted, making only a few simple and intuitive assumptions, to the class of inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 159 شماره
صفحات -
تاریخ انتشار 2008